Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Regional cerebral blood flow changes were evaluated in different subcortical brain targets following deep brain stimulation (DBS) for chronic pain. Three patients with intractable neuropathic pain were assessed; one had stimulating electrodes in the ventroposterolateral thalamic nucleus (VPL), one in the periventricular grey (PVG) area, and one had electrodes in both targets. Pain relief was achieved in all patients. Cerebral perfusion was measured by single-photon emission computed tomography to determine the effects of DBS. Comparison was made between individual scans using subtraction analysis. DBS consistently increased perfusion in the posterior subcortical region between VPL and PVG, regardless of the site of stimulation. Furthermore, thalamic and dual target DBS increased thalamic perfusion, yet PVG DBS decreased perfusion in the PVG-containing midbrain region and thalamus. Dual target stimulation decreased anterior cingulate and insular cortex perfusion. The study demonstrates regional differences in cerebral perfusion between three accepted and efficacious targets for analgesic DBS.

Original publication




Journal article


Stereotact Funct Neurosurg

Publication Date





175 - 183


Central Nervous System Diseases, Chronic Disease, Deep Brain Stimulation, Electrophysiology, Female, Humans, Magnetoencephalography, Male, Middle Aged, Midline Thalamic Nuclei, Pain, Pain Management, Regional Blood Flow, Tomography, Emission-Computed, Single-Photon, Treatment Outcome, Ventral Thalamic Nuclei