BACKGROUND: Next-generation sequencing has enhanced our understanding of amyotrophic lateral sclerosis (ALS) and its genetic epidemiology. Outside the research setting, testing is often restricted to those who report a family history. The aim of this study was to explore the added benefit of offering routine genetic testing to all patients in a regional ALS centre. METHODS: C9ORF72 expansion testing and exome sequencing was offered to consecutive patients (150 with ALS and 12 with primary lateral sclerosis [PLS]) attending the Oxford Motor Neuron Disease Clinic within a defined time period. RESULTS: A total of 17 (11.3%) highly penetrant pathogenic variants in C9ORF72, SOD1, TARDBP, FUS and TBK1 were detected, of which 10 were also found through standard clinical genetic testing pathways. The systematic approach resulted in five additional diagnoses of a C9ORF72 expansion (number needed to test [NNT] = 28), and two further missense variants in TARDBP and SOD1 (NNT = 69). Additionally, 3 patients were found to carry pathogenic risk variants in NEK1, and 13 patients harboured common missense variants in CFAP410 and KIF5A, also associated with an increased risk of ALS. We report two novel non-coding loss-of-function splice variants in TBK1 and OPTN. No relevant variants were found in the PLS patients. Patients were offered double-blinded participation, but >80% requested disclosure of the results. CONCLUSIONS: This study provides evidence that expanding genetic testing to all patients with a clinical diagnosis of ALS enhances the potential for recruitment to clinical trials, but will have direct resource implications for genetic counselling.
Journal article
Eur J Neurol
09/05/2023
amyotrophic lateral sclerosis, genetics, whole exome sequencing