Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS: Selective neuronal vulnerability of hippocampal Cornu Ammonis (CA)-1 neurons is a pathological hallmark of Alzheimer's Disease (AD) with an unknown underlying mechanism. We interrogated the expression of Tuberous Sclerosis Complex-1 (TSC1; hamartin) and mTOR-related proteins in hippocampal CA1 and CA3 subfields. METHODS: A human post-mortem cohort of mild (n=7) and severe (n=10) AD and non-neurological controls (n=9) was used for quantitative and semi-quantitative analyses. We also developed an in vitro TSC1-knockdown model in rat hippocampal neurons, while transcriptomic analyses of TSC1-knockdown neuronal cultures were performed. RESULTS: We found a selective increase of TSC1 cytoplasmic inclusions in human AD CA1 neurons with hyperactivation of one of TSC1's downstream targets, the mammalian target of rapamycin complex-1 (mTORC1), suggesting that TSC1 is no longer active in AD. TSC1-knockdown experiments showed accelerated cell death independent of amyloid-beta toxicity. Transcriptomic analyses of TSC1 knockdown neuronal cultures revealed signatures that were significantly enriched for AD-related pathways. CONCLUSIONS: Our combined data point to TSC1 dysregulation as a key driver of selective neuronal vulnerability in the AD hippocampus. Future work aimed at identifying targets amenable to therapeutic manipulation is urgently needed to halt selective neurodegeneration, and by extension, debilitating cognitive impairment characteristic of AD.

Original publication

DOI

10.1111/nan.12904

Type

Journal article

Journal

Neuropathol Appl Neurobiol

Publication Date

05/04/2023

Keywords

Alzheimer’s Disease, molecular biology, neurodegeneration, neuropathology