Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Sound localization relies on the neural processing of binaural and monaural spatial cues generated by the physical properties of the head and body. Hearing loss in one ear compromises binaural computations, impairing the ability to localize sounds in the horizontal plane. With appropriate training, adult individuals can adapt to this binaural imbalance and largely recover their localization accuracy. However, it remains unclear how long this learning is retained or whether it generalizes to other stimuli. METHODS: We trained ferrets to localize broadband noise bursts in quiet conditions and measured their initial head orienting responses and approach-to-target behavior. To evaluate the persistence of auditory spatial learning, we tested the sound localization performance of the animals over repeated periods of monaural earplugging that were interleaved with short or long periods of normal binaural hearing. To explore learning generalization to other stimulus types, we measured the localization accuracy before and after adaptation using different bandwidth stimuli presented against constant or amplitude-modulated background noise. RESULTS: Retention of learning resulted in a smaller initial deficit when the same ear was occluded on subsequent occasions. Each time, the animals' performance recovered with training to near pre-plug levels of localization accuracy. By contrast, switching the earplug to the contralateral ear resulted in less adaptation, indicating that the capacity to learn a new strategy for localizing sound is more limited if the animals have previously adapted to conductive hearing loss in the opposite ear. Moreover, the degree of adaptation to the training stimulus for individual animals was significantly correlated with the extent to which learning extended to untrained octave band target sounds presented in silence and to broadband targets presented in background noise, suggesting that adaptation and generalization go hand in hand. CONCLUSIONS: Together, these findings provide further evidence for plasticity in the weighting of monaural and binaural cues during adaptation to unilateral conductive hearing loss, and show that the training-dependent recovery in spatial hearing can generalize to more naturalistic listening conditions, so long as the target sounds provide sufficient spatial information.

Original publication

DOI

10.3389/fnins.2023.1067937

Type

Journal article

Journal

Front Neurosci

Publication Date

2023

Volume

17

Keywords

adaptation, binaural, ferret, monaural spectral cues, perceptual learning, plasticity, spatial hearing, training