Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

After intravenous infection of mice, lymphocytic choriomeningitis virus multiplied in spleens and livers, attaining highest concentrations on days 4 to 6. The subsequent clearance was as rapid, and 8 to 10 days after inoculation, infectivity was usually below detectability. During the effector phase of virus elimination, both cytotoxic T-cell (CTL) activity and the number of cells producing antiviral antibodies were high. Monoclonal antibodies directed against T lymphocytes and T-lymphocyte subsets were inoculated once intravenously 5, 6, or 7 days after infection of the animals, and the effects on antiviral immune responses, as well as on elimination of virus from the organs, were determined. Treatment with anti-Thy-1 and anti-Lyt-2 antibodies blocked elimination of the virus and profoundly diminished the activity of spleen CTLs but reduced the antibody response partially (anti-Thy-1) or increased it (anti-Lyt-2). In contrast, treatment with the anti-L3T4 antibody had essentially no effect on either virus elimination or CTL response but abolished antibody production. We conclude that Lyt-2+ (cytotoxic-suppressive) T lymphocytes are needed for elimination of the virus and also regulate the humoral response but that antiviral antibodies are not essential for control of the infection.

Type

Journal article

Journal

J Virol

Publication Date

06/1987

Volume

61

Pages

1867 - 1874

Keywords

Acute Disease, Animals, Antibodies, Monoclonal, Antibodies, Viral, Antigens, Ly, Convalescence, Female, Lymphocyte Cooperation, Lymphocyte Depletion, Lymphocytic Choriomeningitis, Lymphocytic choriomeningitis virus, Mice, Mice, Inbred CBA, T-Lymphocytes