Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Decision-making not only involves deciding about which action to choose but when and whether to initiate an action in the first place. Macaque monkeys tracked number of dots on a screen and could choose when to make a response. The longer the animals waited before responding, the more dots appeared on the screen and the higher the probability of reward. Monkeys waited longer before making a response when a trial's value was less than the environment's average value. Recordings of brain activity with fMRI revealed that activity in dorsal raphe nucleus (DRN)-a key source of serotonin (5-HT)-tracked average value of the environment. By contrast, activity in the basal forebrain (BF)-an important source of acetylcholine (ACh)-was related to decision time to act as a function of immediate and recent past context. Interactions between DRN and BF and the anterior cingulate cortex (ACC), another region with action initiation-related activity, occurred as a function of the decision time to act. Next, we performed two psychopharmacological studies. Manipulating systemic 5-HT by citalopram prolonged the time macaques waited to respond for a given opportunity. This effect was more evident during blocks with long inter-trial intervals (ITIs) where good opportunities were sparse. Manipulating systemic acetylcholine (ACh) by rivastigmine reduced the time macaques waited to respond given the immediate and recent past context, a pattern opposite to the effect observed with 5-HT. These findings suggest complementary roles for serotonin/DRN and acetylcholine/BF in decisions about when to initiate an action.

Original publication

DOI

10.1016/j.cub.2022.01.042

Type

Journal article

Journal

Curr Biol

Publication Date

08/02/2022

Keywords

acetylcholine, action timing, anterior cingulate cortex, basal forebrain, decision-making, dorsal raphe nucleus, fMRI, non-human primate, psychophramacology, serotonin