Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Docking, the initial association of secretory vesicles with the plasma membrane, precedes formation of the SNARE complex, which drives membrane fusion. For many years, the molecular identity of the docked state, and especially the vesicular docking protein, has been unknown, as has the link to SNARE complex assembly. Here, using adrenal chromaffin cells, we identify the vesicular docking partner as synaptotagmin-1, the calcium sensor for exocytosis, and SNAP-25 as an essential plasma membrane docking factor, which, together with the previously known docking factors Munc18-1 and syntaxin, form the minimal docking machinery. Moreover, we show that the requirement for Munc18-1 in docking, but not fusion, can be overcome by stabilizing syntaxin/SNAP-25 acceptor complexes. These findings, together with cross-rescue, double-knockout, and electrophysiological data, lead us to propose that vesicles dock when synaptotagmin-1 binds to syntaxin/SNAP-25 acceptor complexes, whereas Munc18-1 is required for the downstream association of synaptobrevin to form fusogenic SNARE complexes.

Original publication

DOI

10.1016/j.cell.2009.07.027

Type

Journal article

Journal

Cell

Publication Date

04/09/2009

Volume

138

Pages

935 - 946

Keywords

Animals, Cell Membrane, Chromaffin Cells, Gene Knockout Techniques, Mice, Munc18 Proteins, Secretory Vesicles, Synaptotagmin I, Syntaxin 1