Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Bridging integrator 1 (BIN1)/Amphiphysin/Rvs (BAR) protein family is an essential part of the cell's machinery to bend membranes. BIN1 is a muscle-enriched BAR protein with an established role in muscle development and skeletal myopathies. Here, we demonstrate that BIN1, on its own, is able to form complex interconnected tubular systems in vitro, reminiscent of t-tubule system in muscle cells. We further describe how BIN1's electrostatic interactions regulate membrane bending: the ratio of negatively charged lipids in the bilayer altered membrane bending and binding properties of BIN1 and so did the manipulation of BIN1's surface charge. We show that the electrostatically mediated BIN1 membrane binding depended on the membrane curvature-it was less affected in liposomes with high curvature. Curiously, BIN1 membrane binding and bending was diminished in cells where the membrane's charge was experimentally reduced. Membrane bending was also reduced in BIN1 mutants where negative or positive charges in the BAR domain have been eliminated. This phenotype, characteristic of BIN1 mutants linked to myopathies, was rescued when the membrane charge was made more negative. The latter findings also show that cells can control tubulation at their membranes by simply altering the membrane charge and through it, the recruitment of BAR proteins and their interaction partners (e.g. dynamin).

Original publication

DOI

10.1016/j.jmb.2019.12.001

Type

Journal article

Journal

J Mol Biol

Publication Date

14/02/2020

Volume

432

Pages

1235 - 1250

Keywords

BAR protein, Membrane bending, t-tubule, Adaptor Proteins, Signal Transducing, Animals, COS Cells, Cell Membrane, Chlorocebus aethiops, Circular Dichroism, Dynamin II, Liposomes, Mutation, Nerve Tissue Proteins, Nuclear Proteins, Static Electricity, Tumor Suppressor Proteins