Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2020 Walter de Gruyter GmbH, Berlin/Boston 2020. The synaptic vesicle (SV) cycle, a trafficking pathway by which SV fuses with the plasma membrane to release neurotransmitters at the neuronal synapse, resides at the heart of neurotransmission. SV fusion consumes vesicle membrane and proteins, whose availability is limited, and these components must be recycled quickly to prevent synaptic fatigue. Biochemical, genetic and physiological approaches over the past five decades have led to a discovery of a large directory of proteins and lipids central to the SV cycle and several models on how these constituents account for the synapse function. The complexity of the SV cycle is starting to be comprehended, which opens new perspectives for our understanding of neuronal physiology and provides mechanistic explanations for several neurological and neurodegenerative diseases. Here, selected classic and recent insights into the mechanisms of two key SV trafficking steps (exocytosis and endocytosis) are reviewed, as well as their links to selected brain pathologies.

Original publication




Journal article



Publication Date





219 - 226