Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Single cell biology has the potential to elucidate many critical biological processes and diseases, from development and regeneration to cancer. Single cell analyses are uncovering the molecular diversity of cells, revealing a clearer picture of the variation among and between different cell types. New techniques are beginning to unravel how differences in cell state-transcriptional, epigenetic, and other characteristics-can lead to different cell fates among genetically identical cells, which underlies complex processes such as embryonic development, drug resistance, response to injury, and cellular reprogramming. Single cell technologies also pose significant challenges relating to processing and analyzing vast amounts of data collected. To realize the potential of single cell technologies, new computational approaches are needed. On March 17-19, 2021, experts in single cell biology met virtually for the Keystone eSymposium "Single Cell Biology" to discuss advances both in single cell applications and technologies.

Original publication

DOI

10.1111/nyas.14692

Type

Journal article

Journal

Ann N Y Acad Sci

Publication Date

12/2021

Volume

1506

Pages

74 - 97

Keywords

development, differentiation, lineage tracing, reprogramming, single cell sequencing, spatial transcriptomics, Animals, Cell Differentiation, Cell Lineage, Cellular Reprogramming, Congresses as Topic, Embryonic Development, Humans, Macrophages, Research Report, Single-Cell Analysis