Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We have used monoclonal antibodies specific for acetylated and unacetylated alpha-tubulin to characterize the acetylated alpha-tubulin isotype of Physarum polycephalum, its expression in the life cycle, and its localization in particular microtubular organelles. We have used the monoclonal antibody 6-11B-1 (Piperno, G., and M. T. Fuller, 1985, J. Cell Biol., 101:2085-2094) as the probe for acetylated alpha-tubulin and have provided a biochemical characterization of the monoclonal antibody KMP-1 as a probe for unacetylated tubulin in Physarum. Concomitant use of these two probes has allowed us to characterize the acetylated alpha-tubulin of Physarum as the alpha 3 isotype. We have detected this acetylated alpha 3 tubulin isotype in both the flagellate and in the myxameba, but not in the plasmodium. In the flagellate, acetylated tubulin is present in both the flagellar axonemes and in an extensive array of cytoplasmic microtubules. The extensive arrangement of acetylated cytoplasmic microtubules and the flagellar axonemes are elaborated during the myxameba-flagellate transformation. In the myxameba, acetylated tubulin is not present in the cytoplasmic microtubules nor in the mitotic spindle microtubules, but is associated with the two centrioles of this cell. These findings, taken together with the apparent absence of acetylated alpha-tubulin in the ephemeral microtubules of the plasmodium suggest a natural correspondence between the presence of acetylated alpha-tubulin and microtubule organelles that are intrinsically stable or cross-linked.

Type

Journal article

Journal

J Cell Biol

Publication Date

01/1987

Volume

104

Pages

41 - 49

Keywords

Acetylation, Antibodies, Monoclonal, Antibody Specificity, Cell Compartmentation, Cell Differentiation, Fluorescent Antibody Technique, Microtubules, Physarum, Protein Processing, Post-Translational, Tubulin