Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have investigated the developmental and tissue specific expression of the human embryonic zeta-globin gene in transgenic mice. A construct containing 550 bp of zeta-globin 5' flanking region, fused to a beta-galactosidase (lacZ) reporter gene and linked to the locus control region (LCR)-like alpha positive regulatory element (alpha PRE) was employed for the production of transgenic mice. Firstly, we compared the number of live born transgenic mice containing this construct to the number of live born transgenic mice containing the entire zeta-globin gene linked to the alpha PRE or the beta LCR. Data showed that 12% of mice generated from eggs injected with zeta-promoter/lacZ/alpha PRE DNA were transgenic compared to only 2% of mice generated from eggs injected with the entire zeta-globin gene linked to the alpha PRE or the beta LCR. The reduced number of live born transgenic mice containing the latter constructs suggests that death of transgenic embryos, possibly due to thalassaemia, may be occurring. X-gal staining of whole embryos containing the lacZ gene revealed that zeta-globin promoter activity was most pronounced at 8.5-9.5 days of development and was restricted to erythroid cells. By 15 days of development, no zeta-globin promoter activity was detected. These results suggest that the alpha PRE can direct high level expression from the zeta-globin promoter and that sequences required for the correct tissue and developmental specific expression of the human zeta-globin gene are present within 550 bp's of 5' flanking region. Sequences within the body of the zeta-globin gene or 3' of the cap site do not appear to be necessary for correct zeta-globin developmental regulation.

Type

Journal article

Journal

Nucleic Acids Res

Publication Date

11/11/1992

Volume

20

Pages

5655 - 5660

Keywords

Animals, Cloning, Molecular, Female, Gene Expression Regulation, Globins, Humans, Male, Mice, Mice, Transgenic, Organ Specificity, beta-Galactosidase