Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Posterior cortical atrophy is an atypical form of Alzheimer's disease characterized by visuospatial impairments and predominant tissue loss in the posterior parieto-occipital and temporo-occipital cortex. Whilst episodic memory is traditionally thought to be relatively preserved in posterior cortical atrophy, recent work indicates that memory impairments form a common clinical symptom in the early stages of the disease. Neuroimaging studies suggest that memory dysfunction in posterior cortical atrophy may originate from atrophy and functional hypoconnectivity of parietal cortex. The structural connectivity patterns underpinning these memory impairments, however, have not been investigated. This line of inquiry is of particular interest, as changes in white matter tracts of posterior cortical atrophy patients have been shown to be more extensive than expected based on posterior atrophy of grey matter. In this cross-sectional diffusion tensor imaging MRI study, we examine the relationship between white matter microstructure and verbal episodic memory in posterior cortical atrophy. We assessed episodic memory performance in a group of posterior cortical atrophy patients (n = 14) and a group of matched healthy control participants (n = 19) using the Free and Cued Selective Reminding Test with Immediate Recall. Diffusion tensor imaging measures were obtained for 13 of the posterior cortical atrophy patients and a second control group of 18 healthy adults. Patients and healthy controls demonstrated similar memory encoding performance, indicating that learning of verbal information was preserved in posterior cortical atrophy. However, retrieval of verbal items was significantly impaired in the patient group compared with control participants. As expected, tract-based spatial statistics analyses showed widespread reductions of white matter integrity in posterior cortical regions of patients compared with healthy adults. Correlation analyses indicated that poor verbal retrieval in the patient group was specifically associated with microstructural damage of the splenium of the corpus callosum. Post-hoc tractography analyses in healthy controls demonstrated that this splenial region was connected to thalamic radiations and the retrolenticular part of the internal capsule. These results provide insight into the brain circuits that underlie memory impairments in posterior cortical atrophy. From a cognitive perspective, we propose that the association between splenial integrity and memory dysfunction could arise indirectly via disruption of attentional processes. We discuss implications for the clinical phenotype and development of therapeutic aids for cognitive impairment in posterior cortical atrophy.

Original publication

DOI

10.1093/braincomms/fcab060

Type

Journal article

Journal

Brain Commun

Publication Date

2021

Volume

3

Keywords

diffusion tensor imaging, memory, posterior cortical atrophy, splenium, white matter