Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We investigated on the mechanism responsible for the reduced ATP-sensitive K(+)(K(ATP)) channel activity recorded from skeletal muscle of K(+)-depleted rats. Patch-clamp and gene expression measurements of K(ATP) channel subunits were performed. A down-regulation of the K(ATP) channel subunits Kir6.2(-70%) and SUR2A(-46%) in skeletal muscles of K(+)-depleted rats but no changes in the expression of Kir6.1, SUR1 and SUR2B subunits were observed. A reduced K(ATP) channel currents of -69.5% in K(+)-depleted rats was observed. The Kir6.2/SUR2A-B agonist cromakalim showed similar potency in activating the K(ATP) channels of normokalaemic and K(+)-depleted rats but reduced efficacy in K(+)-depleted rats. The Kir6.2/SUR1-2B agonist diazoxide activated K(ATP) channels in normokalaemic and K(+)-depleted rats with equal potency and efficacy. The down-regulation of the Kir6.2 explains the reduced K(ATP) channel activity in K(+)-depleted rats. The lower expression of SUR2A explains the reduced efficacy of cromakalim; preserved SUR1 expression accounts for the efficacy of diazoxide. Kir6.2/SUR2A deficiency is associated with impaired muscle function in K(+)-depleted rats and in hypoPP.

Original publication




Journal article


Neuromuscul Disord

Publication Date





74 - 80


Animals, Cromakalim, Diazoxide, Hypokalemic Periodic Paralysis, KATP Channels, Male, Membrane Potentials, Muscle, Skeletal, Patch-Clamp Techniques, Potassium Channel Blockers, Potassium Channels, Inwardly Rectifying, Potassium Deficiency, Rats, Rats, Wistar, Sarcolemma, Vasodilator Agents