Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS/HYPOTHESIS: Sulphonylureas stimulate insulin secretion by closing ATP-sensitive potassium (KATP) channels in the pancreatic beta-cell membrane. KATP channels are also found in other tissues, including heart and smooth muscle, where they link cellular metabolism to electrical activity. The sulphonylurea gliclazide blocks recombinant beta-cell KATP channels (Kir6.2/SUR1) but not heart (Kir6.2/SUR2A) or smooth muscle (Kir6.2/SUR2B) KATP channels with high potency. In this study, we examined the specificity of gliclazide for the native (as opposed to recombinant) KATP channels in beta cells, heart and smooth muscle. METHODS: The action of the drug was studied by whole-cell current recordings of native KATP channels in isolated pancreatic beta-cells and myocytes from heart and smooth muscle. RESULTS: Gliclazide blocked whole-cell beta-cell KATP currents with an IC50 of 184 +/- 30 nmol/l (n = 6-10) but was much less effective in cardiac and smooth muscle (IC50s of 19.5 +/- 5.4 micromol/l (n = 6-12) and 37.9 +/- 1.0 micromol/l (n = 5-10), respectively). In all three tissues, the action of the drug on whole-cell KATP currents was rapidly reversible. In inside-out patches on beta-cells, gliclazide (1 micromol/l) produced a maximum of 66 +/- 13 % inhibition (n = 5), compared with more than 98 % block in the whole-cell configuration. CONCLUSION/INTERPRETATION: Gliclazide is a high-potency sulphonylurea which shows specificity for the pancreatic beta-cell KATP channel over heart and smooth muscle. In this respect, it differs from glibenclamide. The difference in the maximal block observed in the excised patch and whole-cell recordings from beta-cells, may be due to the absence of intracellular Mg-nucleotides in the excised patch experiments.

Original publication




Journal article



Publication Date





1019 - 1025


Animals, Electric Conductivity, Gliclazide, Heart, Islets of Langerhans, Male, Mice, Muscle, Smooth, Vascular, Potassium Channel Blockers, Potassium Channels, Potassium Channels, Inwardly Rectifying, Rats, Rats, Wistar