Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

mTOR (mammalian target of rapamycin) plays a key role in determining how growth factor, nutrient and oxygen levels modulate intracellular events critical for the viability and growth of the cell. This is reflected in the impact of aberrant mTOR signalling on a number of major human diseases and has helped to drive research to understand how TOR (target of rapamycin) is itself regulated. While it is clear that amino acids can affect TOR signalling, how these molecules are sensed by TOR remains controversial, perhaps because cells use different mechanisms as environmental conditions change. Even the question of whether they have an effect inside the cell or at its surface remains unresolved. The present review summarizes current ideas and suggests ways in which some of the models proposed might be unified to produce an amino acid detection system that can adapt to environmental change.

Original publication

DOI

10.1042/BST0370248

Type

Journal article

Journal

Biochem Soc Trans

Publication Date

02/2009

Volume

37

Pages

248 - 252

Keywords

Amino Acid Transport Systems, Amino Acids, Animals, Food, Humans, Intercellular Signaling Peptides and Proteins, Models, Biological, Protein Kinases, TOR Serine-Threonine Kinases