Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Development of landscape connectivity and spatial population models is challenging, given the uncertainty of parameters and the sensitivity of models to factors and their interactions over time. Using spatially and temporally explicit simulations, we evaluate the sensitivity of population distribution, abundance and connectivity of tigers in Southeast Asia to variations of resistance surface, dispersal ability, population density and mortality. Utilizing a temporally dynamic cumulative resistant kernel approach, we tested (1) effects and interactions of parameters on predicted population size, distribution and connectivity, and (2) displacement and divergence in scenarios across timesteps. We evaluated the effect of varying levels of factors on simulated population, cumulative resistance kernel extent, and kernel sum across nine timesteps, producing 24,300 simulations. We demonstrate that predicted population, range shifts, and landscape connectivity are highly sensitive to parameter values with significant interactions and relative strength of effects varying by timestep. Dispersal ability, mortality risk and their interaction dominated predictions. Further, population density had intermediate effects, landscape resistance had relatively low impacts, and mitigation of linear barriers (highways) via lowered resistance had little relative effect. Results are relevant to regional, long-term tiger population management, providing insight into potential population growth and range expansion across a landscape of global conservation priority.

Original publication

DOI

10.3390/land9110415

Type

Journal article

Journal

Land

Publication Date

01/11/2020

Volume

9

Pages

1 - 27