Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The direct modulation of subthalamic nucleus (STN) neurons by dopamine (DA) neurons of the substantia nigra (SN) is controversial owing to the thick caliber and low density of DA axons in the STN. The abnormal activity of the STN in Parkinson's disease (PD), which is central to the appearance of symptoms, is therefore thought to result from the loss of DA in the striatum. We carried out three experiments in rats to explore the function of DA in the STN: (i) light and electron microscopic analysis of tyrosine hydroxylase (TH)-, dopamine beta-hydroxylase (DbetaH)- and DA-immunoreactive structures to determine whether DA axons form synapses; (ii) fast-scan cyclic voltammetry (FCV) to determine whether DA axons release DA; and (iii) patch clamp recording to determine whether DA, at a concentration similar to that detected by FCV, can modulate activity and synaptic transmission/integration. TH- and DA-immunoreactive axons mostly formed symmetric synapses. Because DbetaH-immunoreactive axons were rare and formed asymmetric synapses, they comprised the minority of TH-immunoreactive synapses. Voltammetry demonstrated that DA release was sufficient for the activation of receptors and abolished by blockade of voltage-dependent Na+ channels or removal of extracellular Ca2+. The lifetime and concentration of extracellular DA was increased by blockade of the DA transporter. Dopamine application depolarized STN neurons, increased their frequency of activity and reduced the impact of gamma-aminobutyric acid (GABA)-ergic inputs. These findings suggest that SN DA neurons directly modulate the activity of STN neurons and their loss may contribute to the abnormal activity of STN neurons in PD.

Original publication

DOI

10.1111/j.1460-9568.2004.03629.x

Type

Journal article

Journal

Eur J Neurosci

Publication Date

10/2004

Volume

20

Pages

1788 - 1802

Keywords

Animals, Dopamine, In Vitro Techniques, Rats, Rats, Sprague-Dawley, Substantia Nigra, Subthalamic Nucleus, Synapses, Tyrosine 3-Monooxygenase