Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Conidial hydrophobins in fungal pathogens of plants, insects, and humans are required for fungal attachment and are associated with high virulence. They are believed to contribute to the pathogenesis of infection by preventing immune recognition. Here, we refute this generalisation offering a more nuanced analysis. We show that MacHYD3, a hydrophobin located on the conidial surface of the specialist entomopathogenic fungus Metarhizium acridum (narrow host range, kills only locusts and grasshoppers), activates specifically the humoral and cellular immunity of its own host insect, Locusta migratoria manilensis (Meyen) but not that of other non-host insects. When topically applied to the cuticle, purified MacHYD3 improved the resistance of locusts to both specialist and generalist fungal pathogens (wide host range) but had no effect on the fungal resistance of other insects, including Spodoptera frugiperda and Galleria mellonella. Hydrophobins extracted from the generalist fungal pathogens M. anisopliae and Beauveria bassiana had no effect on the resistance of locusts to fungal infection. Thus, the host locust has evolved to recognize the conidial hydrophobin of its specialist fungal pathogen, whereas conidial hydrophobins from generalist fungi are able to evade recognition. Our results distinguish the immunogenic potential of conidial hydrophobins between specialist and generalist fungi.

Original publication

DOI

10.1016/j.ijbiomac.2020.09.222

Type

Journal article

Journal

Int J Biol Macromol

Publication Date

15/12/2020

Volume

165

Pages

1303 - 1311

Keywords

Hydrophobin, Innate immunity, Locusta migratoria, Metarhizium acridum, Animals, Fungal Proteins, Grasshoppers, Host-Pathogen Interactions, Metarhizium, Spores, Fungal