Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Vanadate is used as a tool to trap magnesium nucleotides in the catalytic site of ATPases. However, it has also been reported to activate ATP-sensitive potassium (K(ATP)) channels in the absence of nucleotides. K(ATP) channels comprise Kir6.2 and sulfonylurea receptor subunits (SUR1 in pancreatic beta cells, SUR2A in cardiac and skeletal muscle, and SUR2B in smooth muscle). We explored the effect of vanadate (2 mM), in the absence and presence of magnesium nucleotides, on different types of cloned K(ATP) channels expressed in Xenopus oocytes. Currents were recorded from inside-out patches. Vanadate inhibited Kir6.2/SUR1 currents by approximately 50% but rapidly activated Kir6.2/SUR2A ( approximately 4-fold) and Kir6. 2/SUR2B ( approximately 2-fold) currents. Mutations in SUR that abolish channel activation by magnesium nucleotides did not prevent the effects of vanadate. Studies with chimeric SUR indicate that the first six transmembrane domains account for the difference in both the kinetics and the vanadate response of Kir6.2/SUR1 and Kir6. 2/SUR2A. Boiling the vanadate solution, which removes the decavanadate polymers, largely abolished both stimulatory and inhibitory actions of vanadate. Our results demonstrate that decavanadate modulates K(ATP) channel activity via the SUR subunit, that this modulation varies with the type of SUR, that it differs from that produced by magnesium nucleotides, and that it involves transmembrane domains 1-6 of SUR.

Type

Journal article

Journal

J Biol Chem

Publication Date

03/09/1999

Volume

274

Pages

25393 - 25397

Keywords

Adenosine Triphosphate, Animals, Ion Channel Gating, Islets of Langerhans, Patch-Clamp Techniques, Potassium Channels, Vanadates, Xenopus laevis