Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Transcranial ultrasound stimulation (TUS) is emerging as a potentially powerful, non-invasive technique for focal brain stimulation. Recent animal work suggests, however, that TUS effects may be confounded by indirect stimulation of early auditory pathways. OBJECTIVE: We aimed to investigate in human participants whether TUS elicits audible sounds and if these can be masked by an audio signal. METHODS: In 18 healthy participants, T1-weighted magnetic resonance brain imaging was acquired for 3D ultrasound simulations to determine optimal transducer placements and source amplitudes. Thermal simulations ensured that temperature rises were <0.5 °C at the target and <3 °C in the skull. To test for non-specific auditory activation, TUS (500 kHz, 300 ms burst, modulated at 1 kHz with 50% duty cycle) was applied to primary visual cortex and participants were asked to distinguish stimulation from non-stimulation trials. EEG was recorded throughout the task. Furthermore, ex-vivo skull experiments tested for the presence of skull vibrations during TUS. RESULTS: We found that participants can hear sound during TUS and can distinguish between stimulation and non-stimulation trials. This was corroborated by EEG recordings indicating auditory activation associated with TUS. Delivering an audio waveform to participants through earphones while TUS was applied reduced detection rates to chance level and abolished the TUS-induced auditory EEG signal. Ex vivo skull experiments demonstrated that sound is conducted through the skull at the pulse repetition frequency of the ultrasound. CONCLUSION: Future studies using TUS in humans need to take this auditory confound into account and mask stimulation appropriately.

Original publication

DOI

10.1016/j.brs.2020.08.014

Type

Journal article

Journal

Brain Stimul

Publication Date

2020

Volume

13

Pages

1527 - 1534

Keywords

EEG, Human auditory perception, Neuromodulation, Non-invasive, Transcranial ultrasound stimulation (TUS), Acoustic Stimulation, Adult, Electroencephalography, Female, Hearing, Humans, Imaging, Three-Dimensional, Magnetic Resonance Imaging, Male, Random Allocation, Ultrasonography, Doppler, Transcranial, Visual Cortex, Young Adult