Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Many microbial symbionts have multiple phenotypic consequences for their animal hosts. However, the ways in which different symbiont-mediated phenotypes combine to affect fitness are not well understood. We investigated whether there are correlations between different symbiont-mediated phenotypes. We used the symbiont Spiroplasma, a striking example of a bacterial symbiont conferring diverse phenotypes on insect hosts. We took 11 strains of Spiroplasma infecting pea aphids (Acyrthosiphon pisum) and assessed their ability to provide protection against the fungal pathogen Pandora neoaphidis and the parasitoids Aphidius ervi and Praon volucre. We also assessed effects on male offspring production for five of the Spiroplasma strains. All but one of the Spiroplasma strains provided very strong protection against the parasitoid P. volucre. As previously reported, variable protection against P. neoaphidis and A. ervi was also present; male-killing was likewise a variable phenotype. We find no evidence of any correlation, positive or negative, between the different phenotypes, nor was there any evidence of an effect of symbiont phylogeny on protective phenotype. We conclude that multiple symbiont-mediated phenotypes can evolve independently from one another without trade-offs between them.

Original publication

DOI

10.1098/rspb.2020.0562

Type

Journal article

Journal

Proc Biol Sci

Publication Date

24/06/2020

Volume

287

Keywords

Spiroplasma, aphid, male-killing, parasitoid, symbiont-mediated resistance, symbiosis