Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Aggression between individuals of the same sex is almost ubiquitous across the animal kingdom. Winners of intrasexual contests often garner considerable fitness benefits, through greater access to mates, food, or social dominance. In females, aggression is often tightly linked to reproduction, with females displaying increases in aggressive behavior when mated, gestating or lactating, or when protecting dependent offspring. In the fruit fly, Drosophila melanogaster, females spend twice as long fighting over food after mating as when they are virgins. However, it is unknown when this increase in aggression begins or whether it is consistent across genotypes. Here we show that aggression in females increases between 2 to 4 hours after mating and remains elevated for at least a week after a single mating. In addition, this increase in aggression 24 hours after mating is consistent across three diverse genotypes, suggesting this may be a universal response to mating in the species. We also report here the first use of automated tracking and classification software to study female aggression in Drosophila and assess its accuracy for this behavior. Dissecting the genetic diversity and temporal patterns of female aggression assists us in better understanding its generality and adaptive function, and will facilitate the identification of its underlying mechanisms.

Original publication

DOI

10.1371/journal.pone.0229633

Type

Journal article

Journal

PLoS One

Publication Date

2020

Volume

15

Keywords

Aggression, Animals, Drosophila melanogaster, Female, Genetic Variation, Male, Reproduction, Sexual Behavior, Animal, Social Dominance