Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background and purpose: Oxygen-enhanced magnetic resonance imaging (MRI) and T1-mapping was used to explore its effectiveness as a prognostic imaging biomarker for chemoradiotherapy outcome in anal squamous cell carcinoma. Materials and methods: T2-weighted, T1 mapping, and oxygen-enhanced T1 maps were acquired before and after 8-10 fractions of chemoradiotherapy and examined whether the oxygen-enhanced MRI response relates to clinical outcome. Patient response to treatment was assessed 3 months following completion of chemoradiotherapy. A mean T1 was extracted from manually segmented tumour regions of interest and a paired two-tailed t-test was used to compare changes across the patient population. Regions of subcutaneous fat and muscle tissue were examined as control ROIs. Results: There was a significant increase in T1 of the tumour ROIs across patients following the 8-10 fractions of chemoradiotherapy (paired t-test, p < 0.001, n = 7). At baseline, prior to receiving chemoradiotherapy, there were no significant changes in T1 across patients from breathing oxygen (n = 9). In the post-chemoRT scans (8-10 fractions), there was a significant decrease in T1 of the tumour ROIs across patients when breathing 100% oxygen (paired t-test, p < 0.001, n = 8). Out of the 12 patients from which we successfully acquired a visit 1 T1-map, only 1 patient did not respond to treatment, therefore, we cannot correlate these results with clinical outcome. Conclusions: These clinical data demonstrate feasibility and potential for T1-mapping and oxygen enhanced T1-mapping to indicate perfusion or treatment response in tumours of this nature. These data show promise for future work with a larger cohort containing more non-responders, which would allow us to relate these measurements to clinical outcome.

Original publication

DOI

10.1016/j.ctro.2020.03.001

Type

Journal article

Journal

Clin Transl Radiat Oncol

Publication Date

05/2020

Volume

22

Pages

44 - 49

Keywords

Chemoradiotherapy, Hypoxia, MOLLI T1-Mapping, MRI, Oxygen Enhanced MRI (OE-MRI), Tumour