Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

H+-ATPases are the main transporters in plant and fungal plasma membranes (PMs), comparable to the Na+/K+ ATPases in animal cells. At the molecular level, most studies on the PM H+-ATPases have been focused on land plants and fungi (yeast). The research of PM H+-ATPases in green algae falls far behind due to the lack of genetic information. Here we studied a potential PM H+-ATPase (CHA1) from Chara australis, a species of green algae belonging to the division Charophyta, members of which are considered to be one of the closest ancestors of land plants. The gene encodes a 107 kDa protein with all 6 P-type ATPase-specific motifs and a long, diverse C-terminal domain. A new amino acid sequence motif R*****Q in transmembrane segment 5 was identified among the known PM H+-ATPases from Charophyta and Chlorophyta algae, which is different from the typical PM H+-ATPases in yeast or land plants. Complementation analysis in yeast showed that CHA1 could successfully reach the PM, and that proton pump activity was obtained when the last 77 up to 87 amino acids of the C-terminal domain were deleted. PM localization was confirmed in Arabidopsis protoplasts; however, deletion of more than 55 amino acids at the N-terminus or more than 98 amino acids at the C-terminus resulted in failure of CHA1 to reach the PM in yeast. These results suggest that an auto-inhibition domain is located in the C-terminal domain, and that CHA1 is likely to have a different regulation mechanism compared to the yeast and land plant PM H+-ATPases.

Original publication

DOI

10.3389/fpls.2019.01707

Type

Journal article

Journal

Front Plant Sci

Publication Date

2019

Volume

10

Keywords

Chara, algae, evolution, plant, plasma membrane H+-ATPase