Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Two-pore domain K+ (K2P) channels have many important physiological functions. However, the functional properties of the TWIK-1 (K2P1.1/KCNK1) K2P channel remain poorly characterized because heterologous expression of this ion channel yields only very low levels of functional activity. Several underlying reasons have been proposed, including TWIK-1 retention in intracellular organelles, inhibition by posttranslational sumoylation, a hydrophobic barrier within the pore, and a low open probability of the selectivity filter (SF) gate. By evaluating these potential mechanisms, we found that the latter dominates the low intrinsic functional activity of TWIK-1. Investigating this further, we observed that the low activity of the SF gate appears to arise from the inefficiency of K+ in stabilizing an active (i.e. conductive) SF conformation. In contrast, other permeant ion species, such as Rb+, NH4+, and Cs+, strongly promoted a pH-dependent activated conformation. Furthermore, many K2P channels are activated by membrane depolarization via an SF-mediated gating mechanism, but we found here that only very strong nonphysiological depolarization produces voltage-dependent activation of heterologously expressed TWIK-1. Remarkably, we also observed that TWIK-1 Rb+ currents are potently inhibited by intracellular K+ (IC50 = 2.8 mm). We conclude that TWIK-1 displays unique SF gating properties among the family of K2P channels. In particular, the apparent instability of the conductive conformation of the TWIK-1 SF in the presence of K+ appears to dominate the low levels of intrinsic functional activity observed when the channel is expressed at the cell surface.

Original publication

DOI

10.1074/jbc.RA119.010612

Type

Journal article

Journal

J Biol Chem

Publication Date

10/01/2020

Volume

295

Pages

610 - 618

Keywords

gating, ion channel, membrane biophysics, membrane protein, potassium channel