Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Efficiency, defined as the amount of work produced for a given amount of oxygen consumed, is a key determinant of endurance capacity, and can be altered by metabolic substrate supply, in that fatty acid oxidation is less efficient than glucose oxidation. It is unclear, however, whether consumption of a high-fat diet would be detrimental or beneficial for endurance capacity, due to purported glycogen-sparing properties. In addition, a high-fat diet over several months leads to cognitive impairment. Here, we tested the hypothesis that short-term ingestion of a high-fat diet (55% kcal from fat) would impair exercise capacity and cognitive function in rats, compared with a control chow diet (7.5% kcal from fat) via mitochondrial uncoupling and energy deprivation. We found that rats ran 35% less far on a treadmill and showed cognitive impairment in a maze test with 9 d of high-fat feeding, with respiratory uncoupling in skeletal muscle mitochondria, associated with increased uncoupling protein (UCP3) levels. Our results suggest that high-fat feeding, even over short periods of time, alters skeletal muscle UCP3 expression, affecting energy production and physical performance. Optimization of nutrition to maximize the efficiency of mitochondrial ATP production could improve energetics in athletes and patients with metabolic abnormalities. © FASEB.

Original publication

DOI

10.1096/fj.09-139691

Type

Journal article

Journal

FASEB Journal

Publication Date

01/12/2009

Volume

23

Pages

4353 - 4360