Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cytoplasmic Ca(2+) oscillations are a universal signaling mode that activates numerous cellular responses [1, 2]. Oscillations are considered the physiological mechanism of Ca(2+) signaling because they occur at low levels of stimulus intensity [3]. Ca(2+) oscillations are proposed to convey information in their amplitude and frequency, leading to activation of specific downstream targets [4-6]. Here, we report that the spatial Ca(2+) gradient within the oscillation is key. Ca(2+) oscillations in mast cells evoked over a range of agonist concentrations in the presence of external Ca(2+) were indistinguishable from those in the absence of Ca(2+) when plasmalemmal Ca(2+) extrusion was suppressed. Nevertheless, only oscillations with accompanying Ca(2+) entry through store-operated CRAC channels triggered gene expression. Increased cytoplasmic Ca(2+) buffering prevented oscillations but not gene activation. Local Ca(2+) influx and not global Ca(2+) oscillations therefore drives gene expression at physiological levels of stimulation. Rather than serving to maintain Ca(2+) oscillations by replenishing stores, we suggest that the role of oscillations might be to activate CRAC channels, thereby ensuring the generation of spatially restricted physiological Ca(2+) signals driving gene activation. Furthermore, we show that the spatial profile of a Ca(2+) oscillation provides a novel mechanism whereby a pleiotropic messenger specifically activates gene expression.

Original publication

DOI

10.1016/j.cub.2009.03.063

Type

Journal article

Journal

Curr Biol

Publication Date

26/05/2009

Volume

19

Pages

853 - 858

Keywords

Animals, Calcium, Calcium Channels, Calcium Signaling, Cell Line, Chelating Agents, Egtazic Acid, Gene Expression, Humans, Leukotriene C4, Mast Cells