Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Non-rod, non-cone ocular photoreceptors have been shown to mediate a range of irradiance detection tasks. The strongest candidates for these receptors are melanopsin-positive retinal ganglion cells (RGCs). To provide a more complete understanding of these receptors in vivo, we have utilized a mouse that lacks rod and cone photoreceptors (rd/rd cl) and compared these animals to congenic wild-types. Using real-time polymerase chain reaction and immunohistochemistry, we address the following. (1) Is Fos expression within these RGCs driven by an input from the rods/cones or is it the product of the intrinsic photosensitivity of these neurons? We demonstrate that most Fos expression across the entire retina is due to the rods/cones, but in the absence of these photoreceptors, light will induce Fos within melanopsin RGCs. (2) Could the reported age-related decline in circadian photosensitivity of rodents be linked to changes in the population of melanopsin RGCs? We show that old mice experience an approximately 40% reduction in melanopsin RGCs. (3) Does the loss of inner retinal neurons affect the responses of melanopsin RGCs? Aged (approximately 700 days) rd/rd cl mice lose most of their inner retina but retain the retinal ganglion cell layer. In these mice, the proportion of melanopsin RGCs that express Fos in response to light is significantly reduced. Collectively, our data suggest that melanopsin RGCs form a heterogeneous population of neurons, and that most of the light-induced c-fos expression within these cells is associated with the endogenous photosensitivity of these neurons.


Journal article


Eur J Neurosci

Publication Date





3007 - 3017


Non-programmatic, Aging, Animals, Cell Count, Immunohistochemistry, Light, Mice, Mice, Transgenic, Photic Stimulation, Photoreceptor Cells, Vertebrate, Proto-Oncogene Proteins c-fos, RNA, Messenger, Retinal Ganglion Cells, Reverse Transcriptase Polymerase Chain Reaction, Rod Opsins