Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In Drosophila oocytes, dorso-anterior transport of gurken mRNA requires both the Dynein motor and the heterogeneous nuclear ribonucleoprotein (hnRNP) Squid. We show that gurken transcripts are transported directly on microtubules by Dynein in nonmembranous electron-dense transport particles that also contain Squid and the transport cofactors Egalitarian and Bicaudal-D. At its destination, gurken mRNA is statically anchored by Dynein within large electron-dense cytoplasmic structures known as sponge bodies. Egalitarian and Bicaudal-D contribute only to active transport, whereas Dynein and Squid are also required for gurken mRNA anchoring and the integrity of sponge bodies. Disrupting Dynein function disperses gurken mRNA homogeneously throughout the cytoplasm, whereas the loss of Squid function converts the sponge bodies into active transport particles. We propose that Dynein acts as a static structural component for the assembly of gurken mRNA transport and anchoring complexes, and that Squid is required for the dynamic conversion of transport particles to sponge bodies.

Original publication

DOI

10.1016/j.devcel.2007.08.022

Type

Journal article

Journal

Dev Cell

Publication Date

10/2007

Volume

13

Pages

523 - 538

Keywords

Animals, Biological Transport, Active, Cytoplasm, Drosophila Proteins, Drosophila melanogaster, Dyneins, Heterogeneous-Nuclear Ribonucleoproteins, Microtubules, RNA Transport, RNA, Messenger, Transforming Growth Factor alpha