Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Analysis of the crystal structures of the intact voltage-sensitive potassium channel KvAP (from Aeropyrum pernix) and Kv1.2 (from rat brain), along with the isolated voltage sensor (VS) domain from KvAP, raises the question of the exact nature of the voltage-sensing conformational change that triggers activation of Kv and related voltage-gated channels. Molecular dynamics simulations of the isolated VS of KvAP in a detergent micelle environment at two different temperatures (300 K and 368 K) have been used to probe the intrinsic flexibility of this domain on a tens-of-nanoseconds timescale. The VS contains a positively charged (S4) helix which is packed against a more hydrophobic S3 helix. The simulations at elevated temperature reveal an intrinsic flexibility/conformational instability of the S3a region (i.e., the C-terminus of the S3 helix). It is also evident that the S4 helix undergoes hinge bending and swiveling about its central I130 residue. The conformational instability of the S3a region facilitates the motion of the N-terminal segment of S4 (i.e., S4a). These simulations thus support a gating model in which, in response to depolarization, an S3b-S4a "paddle" may move relative to the rest of the VS domain. The flexible S3a region may in turn act to help restore the paddle to its initial conformation upon repolarization.

Original publication

DOI

10.1529/biophysj.105.072199

Type

Journal article

Journal

Biophys J

Publication Date

01/03/2006

Volume

90

Pages

1598 - 1606

Keywords

Computer Simulation, Detergents, Elasticity, Ion Channel Gating, Models, Chemical, Models, Molecular, Porosity, Potassium Channels, Voltage-Gated, Protein Conformation, Protein Structure, Tertiary, Temperature, Water