Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Uptake of nitrate into the cytoplasm is the first but least well understood step of denitrification; no gene has previously been identified to be necessary for this process. Upstream from the structural genes of the membrane-bound nitrate reductase (narGHJI) in Paracoccus pantotrophus there is a fusion of two genes, each homologous to members of the narK family. The single open reading frame is predicted to encode 24 transmembrane helices, comprising two domains, NarK1 and NarK2. Analysis of both the accumulation of intracellular nitrite and electron transport through the nitrate reductase enzyme in narK mutants reveals that NarK1 and NarK2 are both involved in nitrate uptake. Maximal rate of nitrate transport via NarK2 was dependent upon nitrite, indicating that NarK2 encodes a nitrate/nitrite antiporter. The uncouplers S13 and dinitrophenol showed that NarK2 was not dependent on the proton motive force for maximal nitrate transport activity. Nitrate transport via NarK1 was dependent on proton motive force, indicating that it is likely to be a nitrate/proton symporter. Low expression of membrane-bound nitrate reductase in narK mutants was counteracted by azide, which induced nitrate reductase expression only if the transcriptional activator NarR was present.

Type

Journal article

Journal

Mol Microbiol

Publication Date

04/2002

Volume

44

Pages

157 - 170

Keywords

Amino Acid Sequence, Anion Transport Proteins, Artificial Gene Fusion, Binding Sites, Biological Transport, Genes, Bacterial, Models, Molecular, Molecular Sequence Data, Nitrates, Open Reading Frames, Paracoccus, Protein Isoforms, Protein Structure, Secondary, Restriction Mapping, Sequence Alignment, Sequence Homology, Amino Acid