Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The bacterial channel KirBac1.1 provides a structural homolog of mammalian inward rectifier potassium (Kir) channels. The conformational dynamics of the selectivity filter of Kir channels are of some interest in the context of possible permeation and gating mechanisms for this channel. Molecular dynamics simulations of KirBac have been performed on a 10-ns timescale, i.e., comparable to that of ion permeation. The results of five simulations (total simulation time 50 ns) based on three different initial ion configurations and two different model membranes are reported. These simulation data provide evidence for limited (<0.1 nm) filter flexibility during the concerted motion of ions and water molecules within the filter, such local changes in conformation occurring on an approximately 1-ns timescale. In the absence of K(+) ions, the KirBac selectivity filter undergoes more substantial distortions. These resemble those seen in comparable simulations of other channels (e.g., KcsA and KcsA-based homology models) and are likely to lead to functional closure of the channel. This suggests filter distortions may provide a mechanism of K-channel gating in addition to changes in the hydrophobic gate formed at the intracellular crossing point of the M2 helices. The simulation data also provide evidence for interactions of the "slide" (pre-M1) helix of KirBac with phospholipid headgroups.

Original publication

DOI

10.1529/biophysj.104.039917

Type

Journal article

Journal

Biophys J

Publication Date

07/2004

Volume

87

Pages

256 - 267

Keywords

Bacterial Proteins, Computer Simulation, Ion Channel Gating, Models, Molecular, Potassium Channels, Potassium Channels, Inwardly Rectifying, Protein Conformation