Full length Vpu from HIV-1: combining molecular dynamics simulations with NMR spectroscopy.
Lemaitre V., Willbold D., Watts A., Fischer WB.
Based on structures made available by solution NMR, molecular models of the protein Vpu from HIV-1 were built and refined by 6 ns MD simulations in a fully hydrated lipid bilayer. Vpu is an 81 amino acid type I integral membrane protein encoded by the human immunodeficiency virus type-1 (HIV-1) and closely related simian immunodeficiency viruses (SIVs). Its role is to amplify viral release. Upon phosphorylation, the cytoplasmic domain adopts a more compact shape with helices 2 and 3 becoming almost parallel to each other. A loss of helicity for several residues belonging to the helices adjacent to both ends of the loop region containing serines 53 and 57 is observed. A fourth helix, present in one of the NMR-based structures of the cytoplasmic domain and located near the C-terminus, is lost upon phosphorylation.