Search results
Found 61120 matches for
Prof Robin Dunbar, Emeritus Professor of Evolutionary Psychology has been in conversation with Jim Al-Khalili on Radio 4's Life Scientific. This fascinating podcast gives takes us on a journey from his early beginnings in science, and his fascinating research and groundbreaking discoveries he's made deciphering the mysteries as to why humans and animals evolve the social habits to exist in friendship circles.
Acute seizure risk in patients with encephalitis: development and validation of clinical prediction models from two independent prospective multicentre cohorts.
OBJECTIVE: In patients with encephalitis, the development of acute symptomatic seizures is highly variable, but when present is associated with a worse outcome. We aimed to determine the factors associated with seizures in encephalitis and develop a clinical prediction model. METHODS: We analysed 203 patients from 24 English hospitals (2005-2008) (Cohort 1). Outcome measures were seizures prior to and during admission, inpatient seizures and status epilepticus. A binary logistic regression risk model was converted to a clinical score and independently validated on an additional 233 patients from 31 UK hospitals (2013-2016) (Cohort 2). RESULTS: In Cohort 1, 121 (60%) patients had a seizure including 103 (51%) with inpatient seizures. Admission Glasgow Coma Scale (GCS) ≤8/15 was predictive of subsequent inpatient seizures (OR (95% CI) 5.55 (2.10 to 14.64), p<0.001), including in those without a history of prior seizures at presentation (OR 6.57 (95% CI 1.37 to 31.5), p=0.025).A clinical model of overall seizure risk identified admission GCS along with aetiology (autoantibody-associated OR 11.99 (95% CI 2.09 to 68.86) and Herpes simplex virus 3.58 (95% CI 1.06 to 12.12)) (area under receiver operating characteristics curve (AUROC) =0.75 (95% CI 0.701 to 0.848), p<0.001). The same model was externally validated in Cohort 2 (AUROC=0.744 (95% CI 0.677 to 0.811), p<0.001). A clinical scoring system for stratifying inpatient seizure risk by decile demonstrated good discrimination using variables available on admission; age, GCS and fever (AUROC=0.716 (95% CI 0.634 to 0.798), p<0.001) and once probable aetiology established (AUROC=0.761 (95% CI 0.6840.839), p<0.001). CONCLUSION: Age, GCS, fever and aetiology can effectively stratify acute seizure risk in patients with encephalitis. These findings can support the development of targeted interventions and aid clinical trial design for antiseizure medication prophylaxis.
Using CombiCells, a platform for titration and combinatorial display of cell surface ligands, to study T-cell antigen sensitivity modulation by accessory receptors
Understanding cellular decisions due to receptor–ligand interactions at cell–cell interfaces has been hampered by the difficulty of independently varying the surface density of multiple different ligands. Here, we express the synthetic binder protein SpyCatcher, designed to form spontaneous covalent bonds with interactors carrying a Spytag, on the cell surface. Using this, we show that addition of different concentrations and combinations of native Spytag-fused ligands allows for the combinatorial display of ligands on cells within minutes. We use this combinatorial display of cell surface ligands—called CombiCells—to assess T cell antigen sensitivity and the impact of T cell co-stimulation and co-inhibition receptors. We find that the T cell receptor (TCR) displayed greater sensitivity to peptides on major-histocompatibility complexes (pMHC) than synthetic chimeric antigen receptor (CARs) and bi-specific T cell engager (BiTEs) display to their target antigen, CD19. While TCR sensitivity was greatly enhanced by CD2/CD58 interactions, CAR sensitivity was primarily but more modestly enhanced by LFA-1/ICAM-1 interactions. Lastly, we show that PD-1/PD-L1 engagement inhibited T cell activation triggered solely by TCR/pMHC interactions, as well as the amplified activation induced by CD2 and CD28 co-stimulation. The ability to easily produce cells with different concentrations and combinations of ligands should accelerate the study of receptor–ligand interactions at cell–cell interfaces.
Ligand requirements for immunoreceptor triggering.
Leukocytes interact with other cells using cell surface receptors. The largest group of such receptors are non-catalytic tyrosine phosphorylated receptors (NTRs), also called immunoreceptors. NTR signalling requires phosphorylation of cytoplasmic tyrosine residues by SRC-family tyrosine kinases. How ligand binding to NTRs induces this phosphorylation, also called NTR triggering, remains controversial, with roles suggested for size-based segregation, clustering, and mechanical force. Here we exploit a recently developed cell-surface generic ligand system to explore the ligand requirements for NTR triggering. We examine the effect of varying the ligand's length, mobility and valency on the activation of representative members of four NTR families: SIRPβ1, Siglec 14, NKp44 and TREM-1. Increasing the ligand length impairs activation via NTRs, despite enhancing cell-cell conjugation, while varying ligand mobility has little effect on either conjugation or activation. Increasing the valency of the ligand, while enhancing cell-cell conjugation, does not enhance activation at equivalent levels of conjugation. These findings are more consistent with a role for size-based segregation, rather than mechanical force or clustering, in NTR triggering, suggesting a role for the kinetic-segregation model.
Structure of the Nipah virus polymerase complex.
Nipah virus is a highly virulent zoonotic paramyxovirus causing severe respiratory and neurological disease. Despite its lethality, there is no approved treatment for Nipah virus infection. The viral polymerase complex, composed of the polymerase (L) and phosphoprotein (P), replicates and transcribes the viral RNA genome. Here, we describe structures of the Nipah virus L-P polymerase complex and the L-protein's Connecting Domain (CD). The cryo-electron microscopy L-P complex structure reveals the organization of the RNA-dependent RNA polymerase (RdRp) and polyribonucleotidyl transferase (PRNTase) domains of the L-protein, and shows how the P-protein, which forms a tetramer, interacts with the RdRp-domain of the L-protein. The crystal structure of the CD-domain alone reveals binding of three Mg ions. Modelling of this domain onto an AlphaFold 3 model of an RNA-L-P complex suggests a catalytic role for one Mg ion in mRNA capping. These findings offer insights into the structural details of the L-P polymerase complex and the molecular interactions between L-protein and P-protein, shedding light on the mechanisms of the replication machinery. This work will underpin efforts to develop antiviral drugs that target the polymerase complex of Nipah virus.
Effect of pandemic influenza A virus PB1 genes of avian origin on viral RNA polymerase activity and pathogenicity.
Zoonotic influenza A virus (IAV) infections pose a substantial threat to global health. The influenza RNA-dependent RNA polymerase (RdRp) comprises the PB2, PB1, and PA proteins. Of the last four pandemic IAVs, three featured avian-origin PB1 genes. Prior research linked these avian PB1 genes to increased viral fitness when reassorted with human IAV genes. This study evaluated chimeric RdRps with PB1 genes from the 1918, 1957, and 1968 pandemic IAVs in a low pathogenic avian influenza (LPAI) virus background to assess polymerase activity and pathogenicity. Substituting in the pandemic PB1 genes reduced polymerase activity, virulence, and altered lung pathology, while the native LPAI PB1 showed the highest pathogenicity and polymerase activity. The native LPAI PB1 virus caused severe pneumonia and high early viral RNA levels, correlating with elevated host cytokine signaling. Increased genetic distance from the LPAI PB1 sequence correlated with reduced polymerase activity, IFN-β expression, viral replication, and pathogenicity.
Impact of APOE, Klotho, and sex on cognitive decline with aging.
The effects of apolipoprotein E (APOE) and Klotho genes, both implicated in aging, on human cognition as a function of sex and age are yet to be definitively established. Here, we showed in the largest cohort studied to date (N = 320,861) that APOE homozygous ε4 carriers had a greater decline in cognition with aging compared to ε3 carriers (ε3/ε4 and ε3/ε3) as well as smaller hippocampi and amygdala (N = 29,510). Critically, sex and age differentially affected the decline in cognition. Younger (40 to 50 y) female homozygous ε4 carriers showed a cognitive advantage over female ε3 carriers, but this advantage was not present in males. By contrast, Klotho-VS heterozygosity did not affect cognition or brain volume, regardless of APOE genotype, sex, or age. These cognitive trajectories with aging demonstrate clear sex-dependent antagonistic pleiotropy effects of APOE ε4, but no effects of Klotho genotype on cognition and brain volume.
Bacteriocin-like peptides encoded by a horizontally acquired island mediate Neisseria gonorrhoeae autolysis.
Neisseria gonorrhoeae is a human-specific pathogen that causes the important sexually transmitted infection, gonorrhoea, an inflammatory condition of the genitourinary tract. The bacterium is closely related to the meningococcus, a leading cause of bacterial meningitis. Both these invasive bacterial species undergo autolysis when in the stationary phase of growth. Autolysis is a form of programmed cell death (PCD) which is part of the life cycle of remarkably few bacteria and poses an evolutionary conundrum as altruistic death provides no obvious benefit for single-celled organisms. Here, we searched for genes present in these 2 invasive species but not in other members of the Neisseria genus. We identified a ~3.4 kb horizontally acquired region, we termed the nap island, which is largely restricted to the gonococcus and meningococcus. The nap island in the gonococcus encodes 3 cationic, bacteriocin-like peptides which have no detectable antimicrobial activity. Instead, the gonococcal Neisseria autolysis peptides (Naps) promote autolytic cell death when bacteria enter the stationary phase of growth. Furthermore, strains lacking the Naps exhibit reduced autolysis in assays of PCD. Expression of Naps is likely to be phase variable, explaining how PCD could have arisen in these important human pathogens. NapC also induces lysis of human cells, so the peptides are likely to have multiple roles during colonisation and disease. The acquisition of the nap island contributed to the emergence of PCD in the gonococcus and meningococcus and potentially to the appearance of invasive disease in Neisseria spp.
Quantification of Fundus Autofluorescence Features in a Molecularly Characterized Cohort of >3500 Patients with Inherited Retinal Disease from the United Kingdom.
PURPOSE: To quantify relevant fundus autofluorescence (FAF) features cross-sectionally and longitudinally in a large cohort of patients with inherited retinal diseases (IRDs). DESIGN: Retrospective study of imaging data. PARTICIPANTS: Patients with a clinical and molecularly confirmed diagnosis of IRD who have undergone 55° FAF imaging at Moorfields Eye Hospital (MEH) and the Royal Liverpool Hospital between 2004 and 2019. METHODS: Five FAF features of interest were defined: vessels, optic disc, perimacular ring of increased signal (ring), relative hypo-autofluorescence (hypo-AF), and hyper-autofluorescence (hyper-AF). Features were manually annotated by 6 graders in a subset of patients based on a defined grading protocol to produce segmentation masks to train an artificial intelligence model, AIRDetect, which was then applied to the entire imaging data set. MAIN OUTCOME MEASURES: Quantitative FAF features, including area and vessel metrics, were analyzed cross-sectionally by gene and age, and longitudinally. AIRDetect feature segmentation and detection were validated with Dice score and precision/recall, respectively. RESULTS: A total of 45 749 FAF images from 3606 patients with IRD from MEH covering 170 genes were automatically segmented using AIRDetect. Model-grader Dice scores for the disc, hypo-AF, hyper-AF, ring, and vessels were, respectively, 0.86, 0.72, 0.69, 0.68, and 0.65. Across patients at presentation, the 5 genes with the largest hypo-AF areas were CHM, ABCC6, RDH12, ABCA4, and RPE65, with mean per-patient areas of 43.72, 29.57, 20.07, 19.65, and 16.92 mm2, respectively. The 5 genes with the largest hyper-AF areas were BEST1, CDH23, NR2E3, MYO7A, and RDH12, with mean areas of 0.50, 047, 0.44, 0.38, and 0.33 mm2, respectively. The 5 genes with the largest ring areas were NR2E3, CDH23, CRX, EYS, and PDE6B, with mean areas of 3.60, 2.90, 2.89, 2.56, and 2.20 mm2, respectively. Vessel density was found to be highest in EFEMP1, BEST1, TIMP3, RS1, and PRPH2 (11.0%, 10.4%, 10.1%, 10.1%, 9.2%) and was lower in retinitis pigmentosa (RP) and Leber congenital amaurosis genes. Longitudinal analysis of decreasing ring area in 4 RP genes (RPGR, USH2A, RHO, and EYS) found EYS to be the fastest progressor at -0.178 mm2/year. CONCLUSIONS: We have conducted the first large-scale cross-sectional and longitudinal quantitative analysis of FAF features across a diverse range of IRDs using a novel AI approach. FINANCIAL DISCLOSURES: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Occlusive retinal vasculitis associated with intravitreal Faricimab injections.
PURPOSE: We describe a case of occlusive vasculitis associated with intravitreal Faricimab (Vabysmo) injections. METHODS: A retrospective case report. RESULTS: A 52-year old man treated with monthly Faricimab injections for diabetic macula oedema presented with sudden reduced vision, new retinal hemorrhages, significant retinal vascular occlusions and ischemia. After screening for differential diagnoses was unremarkable, the patient was treated with oral and intravitreal steroid therapy under which the occlusive vasculitis was stabilized. CONCLUSION: Occlusive vasculitis, though rare, is a potential complication of Faricimab therapy. Comprehensive reporting and large-scale analyses are essential to better understand and manage this adverse event.
Prioritizing questions and topics for the development of guidelines and consensus-based recommendations supported by ILAE: A scoping review and proposal of prioritization criteria.
Clinical practice guidelines (CPGs) and consensus-based recommendations (CBRs) require considerable effort, collaboration, and time-all within the constraints of finite resources. Professional societies, such as the International League Against Epilepsy (ILAE), must prioritize what topics and questions to address. Implementing evidence-based care remains a crucial challenge in clinical practice. Using rigorous processes to ensure that the best available research evidence informs health care recommendations is of the utmost importance. We aimed to develop a structured and transparent process for prioritizing future CPGs and CBRs supported by the ILAE. A multidisciplinary group of researchers and experts from the ILAE Prioritization Task Force conducted a scoping review to identify prioritization approaches for CPG and CBR development. This scoping review was reported according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) and Cochrane recommendations. A Problem/population, Concept, and Context (PCC) strategy was applied to the literature search and selection of the studies. We searched Medline/PubMed, Embase, Web of Science, and Scopus without time or language limits. The findings were synthesized qualitatively. A consensus-based process was followed to develop a prioritization scoring tool for CPGs and another for CBRs. Thirty-nine participants, including clinicians, experts in the field, methodologists, and other relevant stakeholders, contributed to developing the final instrument (based on a 5-point Likert scale). Of 721 unique citations, 8 papers reporting prioritization approaches for guideline development were included. Based on these, we developed an initial tool with 10 criteria. It was iteratively optimized and revised by the ILAE Standards and Best Practice Council, which unanimously approved the instrument. The ILAE Executive Committee subsequently approved its final version. The ILAE Prioritization Tool is intended to standardize the prioritization processes and optimize the ILAE's use of resources to select CPGs and CBRs for endorsement.
Acute angiotensin receptor blockade and mnemonic discrimination in healthy participants.
BACKGROUND: The renin angiotensin system (RAS) is implicated in various cognitive processes relevant to anxiety. However, the role of the RAS in pattern separation, a hippocampal memory mechanism that enables discrete encoding of similar stimuli, is unclear. Given the proposed role of this mechanism in overgeneralization and the maintenance of anxiety, we explored the influence of the RAS on mnemonic discrimination i.e., the behavioral ability arising from pattern separation. DESIGN: In a double-blind experimental medicine trial, we examined the effect of losartan, an angiotensin receptor blocker, on mnemonic discrimination in N = 60 healthy volunteers aged 18-50. Participants were randomly allocated to a 50 mg losartan or placebo condition, and then completed the Mnemonic Similarity Task (MST), an established measure of pattern separation. Main outcome measures were the lure discrimination index (LDI), calculated as the rate of 'similar' responses to lures minus 'similar' responses to foils, and recognition (REC) memory, calculated as the difference between the rate of 'old' responses to targets minus 'old' responses to foils. RESULTS: Data were available for N = 56 participants (N = 40 females, N = 16 males). Participants in the losartan group (N = 29) achieved significantly higher LDI scores (t(54) = 2.30, p = 0.025) compared to the placebo group (N = 27), indicating better mnemonic discrimination. No significant group differences were found in REC scores (U = 324, z = -1.10, d = 0.08; p = 0.271). CONCLUSIONS: We demonstrate for the first time that losartan improves mnemonic discrimination in healthy individuals, suggesting that the RAS may influence pattern separation and anxiety.
Filtration of Short-Wavelength Light Provides Therapeutic Benefit in Retinitis Pigmentosa Caused by a Common Rhodopsin Mutation.
PURPOSE: The role of light exposure in accelerating retinitis pigmentosa (RP) remains controversial. Faster degeneration has however been observed in the inferior than superior retina in several forms ("sector" RP), including those caused by the rhodopsin P23H mutation, suggesting a modifying role of incident light exposure in such cases. Rearing of equivalent animal models in complete darkness has been shown to slow the degeneration. Here we investigate the use of red filters as a potential treatment strategy, with the hypothesis that minimizing retinal exposure to light <600 nm to which rods are maximally sensitive may provide therapeutic benefit. METHODS: Knockin mice heterozygous for the P23H dominant rhodopsin mutation (RhoP23H/+) housed in red-tinted plastic cages were divided at weaning into either untinted or red-tinted cages. Subsequently, photoreceptor layer (PRL) thickness was measured by spectral-domain ocular coherence tomography, retinal function quantified by ERG, and cone morphology determined by immunohistochemical analysis (IHC) of retinal flatmounts. RESULTS: Mice remaining in red-tinted cages had a significantly greater PRL thickness than those housed in untinted cages at all time points. Red housing also led to a highly significant rescue of retinal function as determined by both dark- and light-adapted ERG responses. IHC further revealed a dramatic benefit on cone morphology and number in the red- as compared with the clear-housed group. CONCLUSIONS: Limitation of short-wavelength light exposure significantly slows degeneration in the RhoP23H/+ mouse model. Red filters may represent a cost-effective and low-risk treatment for patients with rod-cone dystrophy in whom a sectoral phenotype is noted.
ON-bipolar cell gene expression during retinal degeneration: Implications for optogenetic visual restoration.
PURPOSE: Retinal bipolar cells survive even in the later stages of inherited retinal degenerations (IRDs) and so are attractive targets for optogenetic approaches to vision restoration. However, it is not known to what extent the remodelling that these cells undergo during degeneration affects their function. Specifically, it is unclear if they are free from metabolic stress, receptive to adeno-associated viral vectors, suitable for opsin-based optogenetic tools and able to propagate signals by releasing neurotransmitter. METHODS: Fluorescence activated cell sorting (FACS) was performed to isolate labelled bipolar cells from dissociated retinae of litter-mates with or without the IRD mutation Pde6brd1/rd1 selectively expressing an enhanced yellow fluorescent protein (EYFP) as a marker in ON-bipolar cells. Subsequent mRNA extraction allowed Illumina® microarray comparison of gene expression in bipolar cells from degenerate to those of wild type retinae. Changes in four candidate genes were further investigated at the protein level using retinal immunohistochemistry over the course of degeneration. RESULTS: A total of sixty differentially expressed transcripts reached statistical significance: these did not include any genes directly associated with native primary bipolar cell signalling, nor changes consistent with metabolic stress. Four significantly altered genes (Srm2, Slf2, Anxa7 & Cntn1), implicated in synaptic remodelling, neurotransmitter release and viral vector entry had immunohistochemical staining colocalising with ON-bipolar cell markers and varying over the course of degeneration. CONCLUSION: Our findings suggest relatively few gene expression changes in the context of degeneration: that despite remodelling, bipolar cells are likely to remain viable targets for optogenetic vision restoration. In addition, several genes where changes were seen could provide a basis for investigations to enhance the efficacy of optogenetic therapies.
Light Input to the Mammalian Circadian Clock.
Circadian rhythms are 24-h cycles in physiology and behavior that occur in virtually all organisms. These processes are not simply driven by changes in the external environment as they persist under constant conditions, providing evidence for an internal biological clock. In mammals, this clock is located in the hypothalamic suprachiasmatic nuclei (SCN) and is based upon an intracellular mechanism composed of a transcriptional-translational feedback loop composed of a number of core clock genes. However, a clock is of no use unless it can be set to the correct time. The primary time cue for the molecular clock in the SCN is light detected by the eye. The photoreceptors involved in this process include the rods and cones that mediate vision, as well as the recently identified melanopsin-expressing photosensitive retinal ganglion cells (pRGCs). Light information is conveyed to the SCN via the retinohypothalamic tract, resulting in an intracellular signaling cascade which converges on cAMP-response elements in the promoters of several key clock genes. Over the last two decades a number of studies have investigated the transcriptional response of the SCN to light stimuli with the aim of further understanding these molecular signaling pathways. Here we provide an overview of these studies and provide protocols for studying the molecular responses to light in the SCN clock.
Mechanisms mediating the effects of light on sleep and alertness: current challenges
Light is an important environmental cue that exerts a direct and potent effect on vigilance states. In humans, light exposure increases subjective alertness and activates brain regions that are involved in promoting wakefulness. The spectral characteristics of these alerting effects of light are consistent with a role of melanopsin-expressing photosensitive retinal ganglion cells (pRGCs) in mediating non-visual responses to light. In photophobic nocturnal rodents, light exposure can be anxiogenic and increase alertness in some studies, but in other studies it clearly induces sleep and reduces body temperature, heart rate, and locomotor activity. In this review, we propose several factors that may influence whether light has an alerting or sleep-promoting effect in mice. These include preceding sleep history, preceding light history, as well as the behavioural context in which light stimuli are delivered.
Evaluation of the Digital Ventilated Cage® system for circadian phenotyping.
The study of circadian rhythms has been critically dependent upon analysing mouse home cage activity, typically employing wheel running activity under different lighting conditions. Here we assess a novel method, the Digital Ventilated Cage (DVC®, Tecniplast SpA, Italy), for circadian phenotyping. Based upon capacitive sensors mounted under black individually ventilated cages with inbuilt LED lighting, each cage becomes an independent light-controlled chamber. Home cage activity in C57BL/6J mice was recorded under a range of lighting conditions, along with circadian clock-deficient cryptochrome-deficient mice (Cry1-/-, Cry2-/- double knockout). C57BL/6J mice exhibited a 24 h period under light/dark conditions, with a free-running period of 23.5 h under constant dark, and period lengthening under constant light. Animals displayed expected phase shifting responses to jet-lag and nocturnal light pulses. Sex differences in circadian parameters and phase shifting responses were also observed. Cryptochrome-deficient mice showed subtle changes in activity under light/dark conditions and were arrhythmic under constant dark, as expected. Our results show the suitability of the DVC system for circadian behavioural screens, accurately detecting circadian period, circadian disruption, phase shifts and mice with clock defects. We provide an evaluation of the strengths and limitations of this method, highlighting how the use of the DVC for studying circadian rhythms depends upon the research requirements of the end user.
Differences in multidimensional phenotype of 2 joint pain models link early weight-bearing deficit to late depressive-like behavior in male mice.
INTRODUCTION: Chronic pain is a hallmark of joint diseases. Although these conditions are often accompanied by negative affective symptoms including depression and anxiety, these comorbidities are rarely studied simultaneously in preclinical models where they are poorly characterised. Moreover, how affective symptoms relate to the more obvious sensory and functional symptoms of joint diseases is not well understood. Here, we have addressed these gaps in knowledge. METHODS: We used 2 preclinical models of joint pain in male mice and an array of behavioural and molecular assays to fully characterise functional deficits, mechanical hypersensitivity, affective symptoms, and nociceptive signaling in joint pain, as well as investigate their relationship. RESULTS: Ankle joint inflammation and knee osteoarthritis induced mechanical hypersensitivity that lasted at least 3 months and that was not different between the 2 models on most days. However, the models presented with markedly different weight-bearing deficits, molecular profiles, and affective outcomes. Specifically, only the model of knee osteoarthritis was accompanied by an increase in negative affective behaviors, including early changes in circadian patterns, persistent cognitive impairments, and late development of depressive-like behavior. Importantly, the early weight-bearing deficit strongly correlated with the emotional profiles and the hypersensitivity at 3 months, suggesting that early objective functional measures may be used as predictors of long-term affective symptoms and pain. CONCLUSION: The predictive value of early weight-bearing deficit could prove useful in the clinical setting for adapted therapeutic approaches for the prevention of emotional comorbidities and better pain management for patients with joint pain.