Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent advances in technology have greatly increased our ability to identify genetic variants in individuals with retinal disease. However, determining which are likely to be pathogenic remains a challenging task. Using a transgenic coneless (cl) mouse model, together with rodless (rd/rd) and rodless/coneless (rd/rd cl) mice, we have characterised patterns of gene expression in the rod and cone photoreceptors at a genome-wide level. We examined the expression of >27,000 genes in the mice lacking rods, cones or both and compared them with wild type animals. We identified a list of 418 genes with highly significant changes in expression in one or more of the transgenic strains. Pathway analysis confirmed that expected Gene Ontology terms such as phototransduction were over-represented amongst these genes. However, many of these genes have no previously known function in the retina. Gene set enrichment analysis further demonstrated that the mouse orthologues of known human retinal disease genes were significantly enriched amongst those genes with decreased expression. Comparison of our data to human disease loci with no known causal genetic changes has highlighted genes with significant changes in expression making these strong candidates for further screening. These data add to the current literature through the utilisation of the specific cl and rd/rd cl models. Moreover, this study identifies genes that appear to be implicated in photoreceptor function thereby providing a valuable filter for variants identified by high-throughput sequencing in individuals with retinal disease.

Original publication

DOI

10.1016/j.exer.2015.01.002

Type

Journal article

Journal

Exp Eye Res

Publication Date

03/2015

Volume

132

Pages

161 - 173

Keywords

Cones, Disease, Expression, Mouse models, Photoreceptors, Retina, Rods, Vision, Animals, Disease Models, Animal, Gene Expression Profiling, Gene Expression Regulation, Mice, Mice, Transgenic, Retinal Cone Photoreceptor Cells, Retinal Diseases, Retinal Rod Photoreceptor Cells