Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The N-methyl-d-aspartate receptor plays a critical role in the formation and maintenance of synapses during brain development. In the rodent, changes in subunit expression and assembly of the heteromeric receptor complex accompany these maturational processes. However, little is known about N-methyl-d-aspartate receptor subunit expression during human brain development. We used in situ hybridization to examine the distribution and relative abundance of NR1, NR2A and NR2B subunit messenger ribonucleic acids in the hippocampal formation and adjacent cortex of 34 human subjects at five stages of life (neonate, infant, adolescent, young adult and adult). At all ages, the three messenger ribonucleic acids were expressed in all subfields, predominantly by pyramidal neurons, granule cells and polymorphic hilar cells. However, their abundance varied across ontogeny. Levels of NR1 messenger ribonucleic acid in CA4, CA3 and CA2 subfields were significantly lower in the neonate than all other age groups. In the dentate gyrus, subiculum and parahippocampal gyrus, NR2B messenger ribonucleic acid levels were higher in the neonate than in older age groups. NR2A messenger ribonucleic acid levels remained constant, leading to an age-related increase in NR2A/2B transcript ratio. We conclude that N-methyl-d-aspartate receptor subunit messenger ribonucleic acids are differentially expressed during postnatal development of the human hippocampus, with a pattern similar but not identical to that seen in the rodent. Changes in subunit composition may thus contribute to maturational differences in human hippocampal N-methyl-d-aspartate receptor function, and to their role in the pathophysiology of schizophrenia and other neurodevelopmental disorders.

Type

Journal article

Journal

Eur J Neurosci

Publication Date

09/2003

Volume

18

Pages

1197 - 1205

Keywords

Absorptiometry, Photon, Adolescent, Adult, Aging, Child, Child, Preschool, Cohort Studies, Female, Gene Expression Regulation, Developmental, Hippocampus, Humans, In Situ Hybridization, Infant, Infant, Newborn, Male, Middle Aged, Oligonucleotide Probes, RNA, Messenger, Receptors, N-Methyl-D-Aspartate