Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The killifish, Fundulus heteroclitus, is a euryhaline teleost fish capable of adapting rapidly to transfer from freshwater (FW) to four times seawater (SW). To investigate osmoregulation at a molecular level, a 5.7-kilobase cDNA homologous to human cystic fibrosis transmembrane conductance regulator (hCFTR) was isolated from a gill cDNA library from SW-adapted killifish. This cDNA encodes a protein product (kfCFTR) that is 59% identical to hCFTR, the most divergent form of CFTR characterized to date. Expression of kfCFTR in Xenopus oocytes generated adenosine 3',5'-cyclic monophosphate-activated, Cl(-)-selective currents similar to those generated by hCFTR. In SW-adapted killifish, kfCFTR was expressed at high levels in the gill, opercular epithelium, and intestine. After abrupt exposure of FW-adapted killifish to SW, kfCFTR expression in the gill increased severalfold, suggesting a role for kfCFTR in salinity adaptation. Under similar conditions, plasma Na+ levels rose significantly after 8 h and then fell, although it is not known whether these changes are directly responsible for the changes in kfCFTR expression. The killifish provides a unique opportunity to understand teleost osmoregulation and the role of CFTR.

Type

Journal article

Journal

Am J Physiol

Publication Date

03/1998

Volume

274

Pages

C715 - C723

Keywords

Adaptation, Physiological, Amino Acid Sequence, Animals, Calcium Channels, Cyclic AMP, Cystic Fibrosis Transmembrane Conductance Regulator, DNA, Complementary, Gene Expression, Humans, Killifishes, Molecular Sequence Data, Sequence Alignment, Water-Electrolyte Balance, Xenopus