Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The effect of cyclic AMP (cAMP)-dependent protein phosphorylation on gamma-aminobutyric acidA (GABAA) receptor function was examined using isolated brain membrane vesicles (microsacs). Muscimol-stimulated 36Cl- uptake was studied in mouse brain microsacs permeabilized to introduce the catalytic subunit of cAMP-dependent protein kinase (PKA). At both submaximal and maximally effective concentrations of muscimol, PKA inhibited muscimol-stimulated 36Cl- uptake by approximately 25%. In parallel experiments, PKA and [gamma-32P]ATP were introduced into the microsacs, and we attempted to immunoprecipitate the entire GABAA receptor complex, under nondenaturing conditions, using an anti-alpha 1-subunit antibody. Data from such experiments show that PKA increases the phosphorylation of several microsac proteins, including a 66-kDa polypeptide specifically immunoprecipitated with the GABAA receptor anti-alpha 1 subunit antibody. Phosphopeptide mapping of the 66-kDa polypeptide demonstrated a 14-kDa fragment similar to that obtained with the purified, PKA-phosphorylated GABAA receptor. These results provide evidence that the catalytic subunit of PKA inhibits the function of brain GABAA receptors and demonstrate that this functional change is concomitant with an increase in protein phosphorylation.

Type

Journal article

Journal

J Neurochem

Publication Date

08/1991

Volume

57

Pages

722 - 725

Keywords

Animals, Biological Transport, Brain, Cell Membrane, Cerebellum, Cerebral Cortex, Chlorides, Hippocampus, Kinetics, Macromolecular Substances, Mice, Mice, Inbred ICR, Muscimol, Protein Kinases, Receptors, GABA-A