Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Populations of the Anopheles gambiae complex are found during the rainy season throughout West Africa, even in arid areas with long dry seasons during which mosquitoes appear to be absent. Several hypotheses have been proposed to explain this apparent paradox, including aestivation, dispersal between neighbouring settlements, and long distance migration using high-altitude wind currents. METHODS: An individual-based, spatially explicit model of mosquito populations was developed for a region of West Africa centred on, and including all of, Burkina Faso. Populations associated with human settlements were linked by dispersal and the model incorporated geospatial data on the distribution of settlements, water bodies and rainfall. RESULTS: Local dispersal (at rates consistent with experimental data) was necessary to explain observed patterns of rainy season populations across all of the simulation area, but by itself failed to account for the presence of populations in the arid North (the Sahel). The presence of rare dry-season larval sites could explain these northern populations, but seems inconsistent with field surveys. Aestivation by female mosquitoes explained rainy-season populations in all but the very sparsest and driest areas of human habitation, while long-distance migration based on annual wind patterns could account for all observed populations. CONCLUSIONS: Modelling studies such as this can help assess the potential validity of different hypotheses and suggest priority areas for experimental study. In particular, the results highlight a shortage of empirical research on mosquito dispersal between neighbouring settlements, which may be critically important to the continued presence of many mosquito populations in West Africa. Further research that establishes the extent to which mosquitoes aestivate, and migrate using high altitude winds, is also much needed to understand Sahelian mosquito populations.

Original publication

DOI

10.1186/s12936-018-2288-3

Type

Journal article

Journal

Malar J

Publication Date

02/04/2018

Volume

17

Keywords

Anopheles coluzzii, Anopheles gambiae, Model, Mosquito aestivation, Mosquito migration