Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Purpose: Ketone bodies are energy substrates produced by the liver during prolonged fasting or low-carbohydrate diet. The ingestion of a ketone ester (KE) rapidly increases blood ketone levels independent of nutritional status. KE has recently been shown to improve exercise performance, but whether it can also promote post-exercise muscle protein or glycogen synthesis is unknown. Methods: Eight healthy trained males participated in a randomized double-blind placebo-controlled crossover study. In each session, subjects undertook a bout of intense one-leg glycogen-depleting exercise followed by a 5-h recovery period during which they ingested a protein/carbohydrate mixture. Additionally, subjects ingested a ketone ester (KE) or an isocaloric placebo (PL). Results: KE intake did not affect muscle glycogen resynthesis, but more rapidly lowered post-exercise AMPK phosphorylation and resulted in higher mTORC1 activation, as evidenced by the higher phosphorylation of its main downstream targets S6K1 and 4E-BP1. As enhanced mTORC1 activation following KE suggests higher protein synthesis rates, we used myogenic C2C12 cells to further confirm that ketone bodies increase both leucine-mediated mTORC1 activation and protein synthesis in muscle cells. Conclusion: Our results indicate that adding KE to a standard post-exercise recovery beverage enhances the post-exercise activation of mTORC1 but does not affect muscle glycogen resynthesis in young healthy volunteers. In vitro, we confirmed that ketone bodies potentiate the increase in mTORC1 activation and protein synthesis in leucine-stimulated myotubes. Whether, chronic oral KE intake during recovery from exercise can facilitate training-induced muscular adaptation and remodeling need to be further investigated.

Original publication

DOI

10.3389/fphys.2017.00310

Type

Journal article

Journal

Front Physiol

Publication Date

2017

Volume

8

Keywords

C2C12 myotubes, exercise recovery, glycogen, human, ketone, mTORC1 signaling, muscle, protein