Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The dengue virion is surrounded by an envelope of membrane proteins surrounding a lipid bilayer. We have combined the cryoelectron microscopy structures of the membrane proteins (PDB: 3J27) with a lipid bilayer whose composition is based on lipidomics data for insect cell membranes, to obtain a near-atomic resolution computational model of the envelope of the dengue virion. A coarse-grained molecular dynamics simulation on the microsecond timescale enables analysis of key biophysical properties of the dengue outer envelope. Properties analyzed include area per lipid values (for a spherical virion with a mixed lipid composition), bilayer thickness, and lipid diffusion coefficients. Despite the absence of cholesterol from the lipid bilayer, the virion exhibits biophysical robustness (slow lipid diffusion alongside stable bilayer thickness, virion diameter, and shape) that matches the cholesterol-rich membrane of influenza A, with similarly anomalous diffusion of lipids. Biophysical robustness of the envelope may confer resilience to environmental perturbations.

Original publication

DOI

10.1016/j.str.2015.12.011

Type

Journal article

Journal

Structure

Publication Date

01/03/2016

Volume

24

Pages

375 - 382

Keywords

dengue virus, diffusion, lipid bilayer, structure and dynamics, viral envelope, Cell Membrane, Cryoelectron Microscopy, Databases, Chemical, Dengue Virus, Lipid Bilayers, Models, Molecular, Molecular Dynamics Simulation, Viral Envelope Proteins, Virion