Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Endogenous retroviruses (ERV), or the remnants of past retroviral infections that are no longer active, are found in the genomes of most vertebrates, typically constituting approximately 10% of the genome. In some vertebrates, particularly in shorter-lived species like rodents, it is not unusual to find active endogenous retroviruses. In longer-lived species, including humans where substantial effort has been invested in searching for active ERVs, it is unusual to find them; to date none have been found in humans. Presumably the chance of detecting an active ERV infection is a function of the length of an ERV epidemic. Intuitively, given that ERVs or signatures of past ERV infections are passed from parents to offspring, we might expect to detect more active ERVs in species with longer generation times, as it should take more years for an infection to run its course in longer than in shorter lived species. This means the observation of more active ERV infections in shorter compared to longer-lived species is paradoxical. We explore this paradox using a modeling approach to investigate factors that influence ERV epidemic length. Our simple epidemiological model may explain why we find evidence of active ERV infections in shorter rather than longer-lived species.

Original publication

DOI

10.1371/journal.pone.0117442

Type

Journal article

Journal

PLoS One

Publication Date

2015

Volume

10

Keywords

Animals, Endogenous Retroviruses, Epidemics, Genome, Host Specificity, Humans, Models, Biological, Retroviridae Infections, Survival Rate