Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Summary: Bacterial chemotaxis depends on signalling through large protein complexes. Each cell must inherit a complex on division, suggesting some co-ordination with cell division. In Escherichia coli the membrane-spanning chemosensory complexes are polar and new static complexes form at pre-cytokinetic sites, ensuring positioning at the new pole after division and suggesting a role for the bacterial cytoskeleton. Rhodobacter sphaeroides has both membrane-associated and cytoplasmic, chromosome-associated chemosensory complexes. We followed the relative positions of the two chemosensory complexes, FtsZ and MreB in aerobic and in photoheterotrophic R.sphaeroides cells using fluorescence microscopy. FtsZ forms polar spots after cytokinesis, which redistribute to the midcell forming nodes from which FtsZ extends circumferentially to form the Z-ring. Membrane-associated chemosensory proteins form a number of dynamic unit-clusters with mature clusters containing about 1000 CheW3proteins. Individual clusters diffuse randomly within the membrane, accumulating at new poles after division but not colocalizing with either FtsZ or MreB. The cytoplasmic complex colocalizes with FtsZ at midcells in new-born cells. Before cytokinesis one complex moves to a daughter cell, followed by the second moving to the other cell. These data indicate that two homologous complexes use different mechanisms to ensure partitioning, and neither complex utilizes FtsZ or MreB for positioning. © 2013 John Wiley & Sons Ltd.

Original publication

DOI

10.1111/mmi.12366

Type

Journal article

Journal

Molecular Microbiology

Publication Date

01/10/2013

Volume

90

Pages

322 - 337