Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Several studies have sought to test the neurodevelopmental hypothesis of schizophrenia through analysis of cortical gyrification. However, to date, results have been inconsistent. A possible reason for this is that gyrification measures at the centimeter scale may be insensitive to subtle morphological changes at smaller scales. The lack of consistency in such studies may impede further interpretation of cortical morphology as an aid to understanding the etiology of schizophrenia. In this study we developed a new approach, examining whether millimeter-scale measures of cortical curvature are sensitive to changes in fundamental geometric properties of the cortical surface in schizophrenia. We determined and compared millimeter-scale and centimeter-scale curvature in three separate case-control studies; specifically two adult groups and one adolescent group. The datasets were of different sizes, with different ages and gender-spreads. The results clearly show that millimeter-scale intrinsic curvature measures were more robust and consistent in identifying reduced gyrification in patients across all three datasets. To further interpret this finding we quantified the ratio of expansion in the upper and lower cortical layers. The results suggest that reduced gyrification in schizophrenia is driven by a reduction in the expansion of upper cortical layers. This may plausibly be related to a reduction in short-range connectivity.

Original publication

DOI

10.1016/j.neuroimage.2012.06.034

Type

Journal article

Journal

Neuroimage

Publication Date

15/10/2012

Volume

63

Pages

611 - 621

Keywords

Adolescent, Adult, Aging, Cerebral Cortex, Databases, Factual, Female, Humans, Magnetic Resonance Imaging, Male, Observer Variation, Reproducibility of Results, Schizophrenia, Sensitivity and Specificity, Young Adult