Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: To identify rare variants contributing to multiple sclerosis (MS) susceptibility in a family we have previously reported with up to 15 individuals affected across 4 generations. METHODS: We performed exome sequencing in a subset of affected individuals to identify novel variants contributing to MS risk within this unique family. The candidate variant was genotyped in a validation cohort of 2,104 MS trio families. RESULTS: Four family members with MS were sequenced and 21,583 variants were found to be shared among these individuals. Refining the variants to those with 1) a predicted loss of function and 2) present within regions of modest haplotype sharing identified 1 novel mutation (rs55762744) in the tyrosine kinase 2 (TYK2) gene. A different polymorphism within this gene has been shown to be protective in genome-wide association studies. In contrast, the TYK2 variant identified here is a novel, missense mutation and was found to be present in 10/14 (72%) cases and 28/60 (47%) of the unaffected family members. Genotyping additional 2,104 trio families showed the variant to be transmitted preferentially from heterozygous parents (transmitted 16: not transmitted 5; χ(2) = 5.76, p = 0.016). CONCLUSIONS: Rs55762744 is a rare variant of modest effect on MS risk affecting a subset of patients (0.8%). Within this pedigree, rs55762744 is common and appears to be a modifier of modest risk effect. Exome sequencing is a quick and cost-effective method and we show here the utility of sequencing a few cases from a single, unique family to identify a novel variant. The sequencing of additional family members or other families may help identify other variants important in MS.

Original publication

DOI

10.1212/WNL.0b013e3182616fc4

Type

Journal article

Journal

Neurology

Publication Date

31/07/2012

Volume

79

Pages

406 - 411

Keywords

Adolescent, Adult, Base Sequence, Chi-Square Distribution, DNA Mutational Analysis, Exome, Family Health, Female, Genetic Linkage, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Genotype, Humans, Male, Middle Aged, Multiple Sclerosis, TYK2 Kinase, Young Adult