Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Although the anti-apoptotic activity of Bcl-2 has been extensively studied, its mode of action is still incompletely understood. In the nematode Caenorhabditis elegans, 131 of 1090 somatic cells undergo programmed cell death during development. Transgenic expression of human Bcl-2 reduced cell death during nematode development, and partially complemented mutation of ced-9, indicating that Bcl-2 can functionally interact with the nematode cell death machinery. Identification of the nematode target(s) of Bcl-2 inhibition would help clarify the mechanism by which Bcl-2 suppresses apoptosis in mammalian cells. Exploiting yeast-based systems and biochemical assays, we analysed the ability of Bcl-2 to interact with and regulate the activity of nematode apoptosis proteins. Unlike CED-9, Bcl-2 could not directly associate with the caspase-activating adaptor protein CED-4, nor could it inhibit CED-4-dependent yeast death. By contrast, Bcl-2 could bind the C. elegans pro-apoptotic BH3-only Bcl-2 family member EGL-1. These data prompt us to hypothesise that Bcl-2 might suppress nematode cell death by preventing EGL-1 from antagonising CED-9, rather than by inhibiting CED-4.

Original publication

DOI

10.1242/jcs.02985

Type

Journal article

Journal

Journal of Cell Science

Publication Date

15/06/2006

Volume

119

Pages

2572 - 2582