Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The extent and pattern of gray matter (GM) demyelination in the spinal cord in multiple sclerosis (MS) has not been examined in detail. Human autopsy material was obtained from 36 MS cases and 12 controls. Transverse sections were taken from five levels of the spinal cord (upper cervical, lower cervical, upper thoracic, lower thoracic and lumbar levels) and the extent of GM and white matter (WM) demyelination evaluated using proteolipid protein immunohistochemistry (IHC). The proportion of the GM that was demyelinated (33%) was significantly greater than the proportion of demyelinated WM (20%) (P < 0.0001). Similarly, demyelination was more extensive in the GM than in the WM at each of the five cord levels. The extent of GM demyelination was not significantly different between the five cord levels while WM demyelination was greatest at the upper cervical level. Morphologically, the borders of a proportion of the GM plaques show a strict respect for the GM/WM boundary. We demonstrate that extensive demyelination occurs in the GM of the spinal cord in MS. Myelin protein IHC reveals a novel pattern of residual plaque morphology challenging previous work suggesting that MS plaques display a total disregard for anatomical boundaries.

Original publication

DOI

10.1111/j.1750-3639.2006.00018.x

Type

Journal article

Journal

Brain Pathol

Publication Date

07/2006

Volume

16

Pages

202 - 208

Keywords

Adult, Age Factors, Aged, Demyelinating Diseases, Female, Humans, Immunohistochemistry, Male, Middle Aged, Multiple Sclerosis, Myelin Proteolipid Protein, Sex Factors, Spinal Cord