Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: There has been much research into the use of RNA interference (RNAi) for the treatment of human diseases. Many viruses, including hepatitis B virus (HBV), are susceptible to inhibition by this mechanism. However, for RNAi to be effective therapeutically, a suitable delivery system is required. METHODS: Here we identify an RNAi sequence active against the HBV surface antigen (HBsAg), and demonstrate its expression from a polymerase III expression cassette. The expression cassette was inserted into two different vector systems, based on either prototype foamy virus (PFV) or adeno-associated virus (AAV), both of which are non-pathogenic and capable of integration into cellular DNA. The vectors containing the HBV-targeted RNAi molecule were introduced into 293T.HBs cells, a cell line stably expressing HBsAg. The vectors were also assessed in HepG2.2.15 cells, which secrete infectious HBV virions. RESULTS: Seven days post-transduction, a knockdown of HBsAg by approximately 90%, compared with controls, was detected in 293T.HBs cells transduced by shRNA encoding PFV and AAV vectors. This reduction has been observed up to 5 months post-transduction in single cell clones. Both vectors successfully inhibited HBsAg expression from HepG2.2.15 cells even in the presence of HBV replication. RT-PCR of RNA extracted from these cells showed a reduction in the level of HBV pre-genomic RNA, an essential replication intermediate and messenger RNA for HBV core and polymerase proteins, as well as the HBsAg messenger RNA. CONCLUSIONS: This work is the first to demonstrate that delivery of RNAi by viral vectors has therapeutic potential for chronic HBV infection and establishes the ground work for the use of such vectors in vivo.

Original publication

DOI

10.1002/jgm.739

Type

Journal article

Journal

J Gene Med

Publication Date

07/2005

Volume

7

Pages

918 - 925

Keywords

Base Sequence, Cells, Cultured, Dependovirus, Genetic Vectors, Hepatitis B Surface Antigens, Hepatitis B virus, Humans, Molecular Sequence Data, RNA, Small Interfering, Retroviridae, Transduction, Genetic, Transfection, Virus Replication