Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Many trypanosomatid protozoa are important human or animal pathogens. The well defined morphology and precisely choreographed division of trypanosomatid cells makes morphological analysis a powerful tool for analyzing the effect of mutations, chemical insults and changes between lifecycle stages. High-throughput image analysis of micrographs has the potential to accelerate collection of quantitative morphological data. Trypanosomatid cells have two large DNA-containing organelles, the kinetoplast (mitochondrial DNA) and nucleus, which provide useful markers for morphometric analysis; however they need to be accurately identified and often lie in close proximity. This presents a technical challenge. Accurate identification and quantitation of the DNA content of these organelles is a central requirement of any automated analysis method. RESULTS: We have developed a technique based on double staining of the DNA with a minor groove binding (4'', 6-diamidino-2-phenylindole (DAPI)) and a base pair intercalating (propidium iodide (PI) or SYBR green) fluorescent stain and color deconvolution. This allows the identification of kinetoplast and nuclear DNA in the micrograph based on whether the organelle has DNA with a more A-T or G-C rich composition. Following unambiguous identification of the kinetoplasts and nuclei the resulting images are amenable to quantitative automated analysis of kinetoplast and nucleus number and DNA content. On this foundation we have developed a demonstrative analysis tool capable of measuring kinetoplast and nucleus DNA content, size and position and cell body shape, length and width automatically. CONCLUSIONS: Our approach to DNA staining and automated quantitative analysis of trypanosomatid morphology accelerated analysis of trypanosomatid protozoa. We have validated this approach using Leishmania mexicana, Crithidia fasciculata and wild-type and mutant Trypanosoma brucei. Automated analysis of T. brucei morphology was of comparable quality to manual analysis while being faster and less susceptible to experimentalist bias. The complete data set from each cell and all analysis parameters used can be recorded ensuring repeatability and allowing complete data archiving and reanalysis.

Original publication

DOI

10.1186/1741-7007-10-1

Type

Journal article

Journal

BMC Biol

Publication Date

03/01/2012

Volume

10

Keywords

Cell Cycle, Cell Nucleus, Coloring Agents, Crithidia fasciculata, DNA, Kinetoplast, DNA, Protozoan, Flow Cytometry, Image Processing, Computer-Assisted, Indoles, Leishmania mexicana, Microscopy, Fluorescence, Organic Chemicals, Propidium, Staining and Labeling, Trypanosoma brucei brucei